photovoltaic array image
Connecting Solar Panels Together for Increased Power Article June 15, 2024 at 11:16 am 2024-06-15T11:16:37-04:00
alternative energy tutorials
Alternative Energy Tutorials

Connecting Solar Panels Together

How to Connect Solar Panels Together

solar powerConnecting solar panels together is a simple and effective way of increasing your solar power capabilities. Going green is a great idea, and as the sun is our ultimate power source, it makes sense to utilize this energy to power our homes. As solar power becomes more accessible, more and more homeowners are buying photovoltaic solar panels.

However, these photovoltaic solar panels can be very costly so buying them over time helps to spread the cost. But the problem then becomes how do we connect these extra solar panels together to increase the voltage and power output of what’s already there.

The trick here when connecting solar panels together is to choose a connection method that is going to give you the most energy efficient configuration for your particular requirements.

Connecting solar panels together can seem like a daunting task when you first start to look at how it should be done, but connecting multiple solar panels together is not that hard with a little thought. Wiring solar panels together in either parallel or series combinations to make larger arrays is an often overlooked, yet completely essential part of any well designed solar power system.

There are three basic but very different ways of connecting solar panels together and each connection method is designed for a specific purpose. For example, to produce more output voltage or to produce more current.

Solar photovoltaic panels can be electrically connected together in series to increase the voltage output, or they can be connected together in parallel to increase the output amperage. Solar pv panels can also be wired together in both series and parallel combinations to increase both the output voltage and current to produce a higher wattage array.

Whether you are connecting two or more solar panels, as long as you understand the basic principles of how connecting multiple solar panels together increases power and how each of these wiring methods works, you can easily decide on how to wire your own panels together. After all connecting solar panels together correctly can greatly improve the efficiency of your solar system.

Connecting Solar Panels Together in Series

The first method we will look at for connecting solar panels together is what’s known as “Series Wiring“. The electrical connection of solar panels in series increases the total system output voltage. Series connected solar panels are generally used when you have a grid connected inverter or charge controller that requires 24 volts or more. To series wire the panels together you connect the positive terminal to the negative terminal of each panel until you are left with a single positive and negative connection.

Solar panels in series add up or sum the voltages produced by each individual panel, giving the total output voltage of the array as shown.

Solar Panels in Series of Same Characteristics

connecting solar panels together in series

In this method ALL the solar panels are of the same type and power rating. The total voltage output becomes the sum of the voltage output of each panel. Using the same three 6 volt, 3.0 amp panels from above, we can see that when these pv panels are connected together in series, the array will produce an output voltage of 18 Volts (6 + 6 + 6) at 3.0 Amperes, giving 54 Watts (volts x amps) at full sun.

Now lets look at connecting solar panels in series with different nominal voltages but with identical current ratings.

Solar Panels in Series of Different Voltages

solar panels in series with different voltages

In this method all the solar panels are of different types and power rating but have a common current rating. When they are connected together in series, the array produces 21 volts at 3.0 amps, or 63 watts. Again the output amperage will remain the same as before at 3.0 amps but the voltage output jumps to 21 volts (5 + 7 + 9) .

Finally, lets look at connecting solar panels in series with completely different nominal voltages and different current ratings.

Solar Panels in Series of Different Currents

solar panels in series with different currents

In this method all the solar panels are of different types and power rating. The individual panel voltages will add together as before, but this time the amperage will be limited to the value of the lowest panel in the series string, in this case 1 Ampere. Then the array will produce 19 Volts (3 + 7 + 9) at 1.0 Ampere only, or only 19 watts out of a possible 69 watts available reducing the arrays efficiency.

We can see that the solar panel rated at 9 volts, 5 amps, will only use one fifth or 20% of its maximum current potential reducing its efficiency and wasting money on the purchase of this solar panel. Connecting solar panels in series with different current ratings should only be used provisionally, as the solar panel with the lowest rated current determines the current output of the whole array.

Connecting Solar Panels Together in Parallel

The next method we will look at of connecting solar panels together is what’s known as “Parallel Wiring“. Connecting solar panels together in parallel is used to boost the total system current and is the reverse of the series connection. For parallel connected solar panels you connect all the positive terminals together (positive to positive) and all of the negative terminals together (negative to negative) until you are left with a single positive and negative connection to attach to your regulator and batteries.

When you connect solar panels together in parallel, the total voltage output remains the same as it would for a single panel, but the output current becomes the sum of the output of each panel as shown.

Solar Panels in Parallel of Same Characteristics

connecting solar panels together in parallel

In this method ALL the solar panels are of the same type and power rating. Using the same three 6 Volt, 3.0 Amp panels as above, the total output of the panels, when connected together in parallel, the output voltage still remains at the same value of 6 volts, but the total amperage has now increased to 9.0 Amperes (3 + 3 + 3), producing 54 watts at full sun.

But what if our newly acquired solar panels are non-identical, how will this affect the other panels. We have seen that the currents add together, so no real problem there, just as long as the panel voltages are the same and the output voltage remains constant. Lets look at connecting solar panels in parallel with different nominal voltages and different current ratings.

Solar Panels in Parallel with Different Voltages and Currents

connecting solar panels together

Here the parallel currents add up as before but the voltage adjusts to the lowest value, in this case 3 volts or some voltage value very close to 3 volts. Solar panels must have the same output voltage to be useful in parallel. If one panel has a higher voltage it will supply the load current to the degree that its output voltage drops to that of the lower voltage panel.

We can see that the solar panel rated at 9 volts, 5 amps, will only operate at a maximum voltage of 3 volts as its operation is being influenced by the smaller panel, reducing its efficiency and wasting money on the purchase of this higher power solar panel. Connecting solar panels in parallel with different voltage ratings is not recommended as the solar panel with the lowest rated voltage determines the voltage output of the whole array.

Then when connecting solar panels together in parallel it is important that they ALL have the same nominal voltage value, but it is not necessary that they have the same ampere value.

Connecting Solar Panels Together Summary

Connecting solar panels together to form bigger arrays is not all that complicated. How many series or parallel strings of panels you make up per array depends on what amount of voltage and current you are aiming for. If you are designing a 12 volt battery charging system than parallel wiring is perfect. If you are looking at a higher voltage grid connected system, than you’re probably going to want to go with a series or series-parallel combination depending on the number of solar panels you have.

But for a simple reference in regards to how to connect solar panels together in either parallel or series wiring configurations, just remember that parallel wiring = more amperes, and series wiring = more voltage, and with the right type and combination of solar panels you can power just about any electrical device you may have in your home.

For more information about Connecting Solar Panels Together in either series or parallel combinations, or to obtain more information about the different types of solar panels available, or to explore the advantages and disadvantages of using solar power in your home, then Click Here to order your copy from Amazon today and learn more about designing, wiring and installing off-grid photovoltaic solar electric systems in your home.

Top Selling Solar Panel Related Products

Please Speak up!

We hope this Connecting Solar Panels Together Tutorial was useful and informative for you. Are you ready to share your thoughts
and experience with us and many others. Your comments are always welcome, just post them in the section below.

P.S. Don't forget to like, rate, and share this Alternative Energy Tutorials post. Thank you for using our website.

597 Comments already about “Connecting Solar Panels Together

  • Hi I have a few 70 volt solar panels and they are very low amperage, I want to Connect to batteries however don’t as yet have an inverter, how are inverters rated and are there inverters that will take high voltages and give 12volt battery Charging Outputs,? I see many 12 volt and 24 volt inverters but cant seem to find one that accepts 70 plus volts input, these panels were sold with LED lights and i was told to connect 3 lights to one panel and they will act as day time down lights but there is no voltage on the light fittings and was told less than 3 lights will be too little and the panels out put would blow them up, so I decided not to operate this way as it sounds unsafe instead I want to use the panels to Charge batteries but the High voltage output is Confusing as other panels I used had 6-12 volt output not 70 volts

    • It seems you are confused. Solar Charge Controllers, also called Battery Charge Controllers take the voltage and current generated by photovoltaic panel(s), and/or wind turbine generators and produce a standard output voltage of between 12 to 48 volts DC (depending on model) used to charge a single battery or a larger battery bank. The configuration and wattage of any connected pv panel, or array would depend on the DC input characteristics of the contorller.

      Inverters take the DC voltage and convert or invert (hence their name) it into AC mains voltage and power, either single-phase 240V or 3-phase for use in the home or to feed the incoming mains power. Thus you would have two different controllers, one to produce the required DC voltage, 12V, 24V, etc. from the panels and another to create the higher mains AC voltage for the home.

      Nowadays, there are all-in-one MPPT Solar Regulators or System Voltage Controllers which have both units within one controller. Again, the DC input and power rating of the regulator will decide how you configure your panels, or array.

      • Thanks for that one last question the panels are 67.9v at 1.07 amps and 72.5 watts how is the best way to wire them all in Parallel, or 3 in series + 3 in series then both sets of 3 in Parallel? I am thinking all 6 in Parallel from my Understanding is there a calculation for the best size Battery or number of Batteries that this will Charge? Thank you for your assistance

        • If your panels are rated at 70 watts each, and you state you have 6. Then that gives a total of 6 x 70 = 420 watts. This 420 watts is ONLY available during “full sun” conditions, about 4 to 5 hours per day. Thus assuming 4 hours gives 4 x 420 = 1680 watt-hours per day. Since its a DC system, watts are equal to volt-amperes (VA) in this case. Thus you have 1680 VA per day max.

          Assuming a 12 volt system, that equates to 1680/12 = 140 amp-hours per day max. Assuming a 50% depth of charge per day, then you would need a 280 Amp-hour battery. That is, your battery discharges to 50% capacity each day, and your panels recharge it during the 4 hours of full sun. Clearly, system losses and efficiency are not considered here.

          • Thank you,
            They will Have full sun and apparently good efficiency in Cloud

  • I have two 100ah 12v batteries connected in parallel. I have a 100 watt thunderbolt solar kit connected to both batteries. I plan to add another 100w solar panel kit. Should I connect each solar kit to both batteries or connect one kit to a single battery and the other kit to the other battery?

    • Solar kit implies panel and charge controller. Then it is not advisable to connect two or more charge controllers to the same battery terminals as they will compete against each other and the battery bank may not be charged or protected correctly. Instead connect all the pv panels to the input of one battery charge controller.

    • not connect in paralel,you just connect your batteris in series and connect the pannels in series in order to increase the current,your system will run perfectly

  • Hi there,I have 2x 330w in parallel with 36v,20a output.Can I run this through a 24v, 20amp , 440 watt voltage inverter/dropper/converter??

  • Please bear with me, I man not a total newby, but I do still have a lot to learn about this…

    I am changing / adding to my RV solar system. It currently has a single panel that I think is 175 watt with a 30 amp PWM controller and 2 12-volt 100 AH RV batteries that were not properly maintained and need to be replaced. Controller and batteries will get changed out, as I change/add panels on the roof and upgrade the wiring to the controllers and battery bank.

    I want to build the system so I can add to it in equal increments as I discover just how much power I need and if needs change. (Unit not yet in my possession so I don’t know exactly how I will be consuming power.)

    My original plan was to build the system with three 200-watt panels and a 60 amp MPPT controller (or 2 panels and a 40 amp controller), keeping everything balanced and add to the system in these increments. I have plenty of room for controllers and batteries, with a fair amount of room on the roof and plan on using Tilt Brackets to maximize collector exposure

    This is where I fall down…. Panels in Series or Parallel? Parallel would give me 27 volts. Series would give me 81 volts. I would really like to stay with 12-volt system so I don’t have to change anything else in the RV, Can this be done with the higher voltage / lower current feeds from the panels? Will the controllers be able to take the higher voltage and adjust accordingly or should I go with the lower voltage and higher current? Also, I don’t yet know at what my Charger/Inverter is rated at so I may have to change that as well.

    At this point the only thing I have purchased is batteries that were removed from my previous RV’s system. These are FLA 6-volt GC2 batteries that were connected in series/parallel giving me 12 volts, 420 AH (allowing for a 50% draw-down), giving me 210 AH. I will eventually switch over to Li Batteries and add additional cells as the system increases

    I am considering 200 Watt panels, up to 2000 watts MAX. The manufacturers spec’s on these panels have a Voc of 27 volts, Short Circuit Current of 9.66 amps.

    In your opinion, would I be better to consider more panels with a lower wattage (100 watts) or continue with the 200 watt panels?

    This is a large RV and mostly Boondocking / Dry Camping expected for 1 night stays and up to 2 weeks or more. (I have a portable generator, but would prefer to use it only when necessary).

    • The size of chosen panels would depend on the available installation space as 2 x 100W panels would take up about 40% more area than one single 200W panel. The configuration of your 2kW array would depend on the DC input characteristics of your charge controller. Higher voltage and lower current would be the preferred option as lower current means smaller diameter cables. Your 60 amp MPPT controller may have a DC input voltage of 150VDC, then your panels Voc of 27 volts would mean 5 panels in one series string (5 x 27 = 135V) and two parallel branches (5S2P) giving a Isc of 19.32 amperes (2 x 9.66) for your 2kW (10 x 200W) array. Clearly, you would need to consult your charge controllers specifications first.

  • I have 12 – 250 Watt solar pannels. Voc 37.6 and Rated current 8.27 Amps
    I have a 80A MPPT solar charge controller wit a Max PV input 2000W (Max. PV Array OV).
    I Have 24V 3KVA, with input voltage 65-140VAC/95-140VAC.
    Wich would be the ideal way to set up the solar panels to produce the most for my battey bulk and inverter?

    • We assume you have bought the solar items you have bought for a reason because you have some knowledge or have been previously advised. If not or you have no idea what you are doing but want us to tell you.

      Clearly, a 250W panel is for 24 volt battery charging. Thus 2000/24 = 83 amperes as you have stated. Then you need a 48 volt system with 6 branches of two panels per string. This would give a maximum array Voc of 75.2 volts, and a maximum array current of 50 amperes.

  • I have two panel 545 watt and one panel 150 watt l have 2.8 kva inverter 24watt how I connect these panel serial or parallel .

  • All is spoken and all is said ,but I just want to know we have six 150watts panels,a 60A charge controller and 4 200A batteries which right way would you recommend us to use in connecting the panels and the batteries /which installation style will give something that is better that we may be able to use a 240-300 volts inverter and 60 12volts bulbs

    • You have 6 x 150 watt panels. Then you have a total of 900 watts maximum at full sun, no matter how you connect them. 150W panels are for charging 12 volt batteries, thus their Vmp is usually about 18 volts. 3 x 18 = 54 volts plus 25% for Voc equals about 68 volts. If your 60A charge controller can handle a maximum DC input of 68 volts, then 3 panels in a series string, and 2 parallel branches (3S2P). If not, 2S3P. Your 12 volt light bulbs will require a 12 volt supply from the 12 volt batteries. Then your 4 batteries are connected in parallel.

  • If both solar panels (120w and 200w) have a charge controller fitted do I need to remove one of them to charge two 12v 105A batteries

      • or join the the wiring below the two controllers to the battery bank . . . in this way should one panel, controller or wiring fail, the other panel will carry the load. ???

    • Hi
      I have 8 solar panel of 545 watt each , each panel 48 volt , each panel current is 10 amp at its peak
      Now , i have a question
      How can i arrange these panels to get max output?
      If i put 6 panel in series and 2 panel in parallel then connect these together , what is my output ?
      I require max output
      Kindly guide me

  • I have 3x 215 watt panels victron.. using a 50amp victron controller i will be fusing a 50amp from controller to battery..can you tell me do i need to fuse each panel to controller or can i just use one fuse ..which size fuse ..plus what would you recommend series or parallel..many thanks.

    • 215 watt panels are generally for 24v systems, thus have an output voltage of around 36 volts. 215w/36v equals about 6 Amperes. 3 in series equals about 108 volts (check panel specs for max Voc). If you controller can handle upto 120VDC input go series at 6 amps. If not 3 in parallel at 36 volts, 18 amps at full sun. For series, obviously one fuse. For parallel, one fuse per branch (panel) if you want, or just one for the whole set.

  • If I have two solar pannes of same voltage(18v×2) but different amperes(80w,120w) and I use two different charge controller on one battery of 150AH.will my connection add up as expected?

  • I have 20 (120Amp 12V) batteries.
    I plan using a 48V inverter .
    My connection is 4 batteries in series = 48V X 120amp
    The 4 in series will be connected in 5 parallel = 48V X (120ah * 5)
    = 48V X 600ah
    = 28,800W

    How many 260W or 360 or 400W solar panels will I need to charge these batteries within 6hours
    And what will be the connection of the solar panels in series and/or parallel?

    • 28800Ah/6hrs = 4800Ahr

      Assume 50% DOD, 4800*0.5 = 2400W of power

      2400*(1-20% equipment loss) = 2880 or 3000W required (rounded-off)

      3000W/260W = 12 panels
      3000W/400W = 8 panels

      The series, parallel, or both connection of the photovoltaic panels would depend on the DC input characteristics of your inverter.

  • hi I have 8 x 450 watt panels and I 6.5k hybrid inverter what is the best way to connect solar panels ‘
    series or parallel ?

  • Gaday Mate . I have a solar system on my roof connecting to the grid using a SAMILPOWER SR5KTLA1. you might be able to help me . It is connected to two banks of 195 watt panels in series (27 panels ) ie 5KVA . Now when all are connected it is putting 3500 in going by the front panel .When i disconect one bank it is putting 2400 in and when i disconect this bank and turn on the other it is putting 2300 in .My question is .Why is it only putting 3500 in when the total is 4700 . Is there somewhere that it is not adding both amounts ,or can the power company cut me back on the amount of power i can put into the grid through the new digital meter they have jusy installed on my house .(240 volt in Australia ) Thanks for your post .It was very informative
    Lee Harvey

    • It depends on how your two banks are configured. With 27 panels in series your inverter will see a much higher DC input voltage than the two smaller banks. Thus your maximum power point (MPP) tracking will be different for each of your three configurations and therefore your AC output power will be different. It could also be that at the higher AC power output, temperature derating occurs as the inverter reduces its power in order to protect itself from overheating.

      • Thank you for your answer .but I don’t understand .is the MMP the maximum that the inverter will allow because the same thing happens when the power is down . for instance with one bank off the inverter tells me around 200 watts (in late afternoon ) turn that bank off and the other one onand it shows also around 200watts .with both on it only shows around 300 watts . Is it tiome for a new inverter or is this because of the uneven number of pannels in each bank . I did have a panel that was shattered (looks like a fault in the panel)I have replaced it with one similar .little bit higher wattage .(215 i think) but this issue was happening before i replaced the panel .The system is about 10 years old and when first installed it used to run up to about 4500 now the maximum it gets to is 3500 . Thanks Lee Harvey

        • MPPT stands for Maximum Power Point Tracking which provides the maximum voltage-current operating parameters. Clearly your inverter load only requires 300 watts of solar power at that point in time. Thus each individual array will supply its maximum wattage at that time of 200W. Adding together two arrays and expecting double the wattage (400W) may not happen. It does not work that way.

          Photovoltaic solar panels lose efficiency over time and is called degradation. It is as a consequence of exposure of the solar panel to the sunlight and weather conditions. Then it is not unexpected that after 10 years you panels efficiency has dropped by 10% or more. Your pv panel manufacturer will provide information about the % annual degradation per panel.

  • I am charging 2 small12 volt batteries for a gate opener. They use to charge on cloudy days with the one 24 volt solar panel. I just purchased a 30 volt solar panel but not sure of best way to wire them together to add extra charging current?

  • I have a 100ah battery and two solar panels, each 100watts, connected in parallel. Is this sufficient to charge my battery?

  • I have one 100watt and one 15watt power solar panels, 100amp battery and 10amp charge controller…. Which type of connection do I need?
    Because I have a parallel connection.
    And even in full sun, controller just shows max of 12.9V meaning the battery is never fully charged….what do I need to ensure that my battery is fully charged…
    If I am to add more panels with that above available, which panel wattage should I add?

    • You state that you have a 100W and a 15W panel in parallel to charge a 12 volt battery. If the average MPP voltage is 17.5 volts, then 115/17.5 equals about 6.6 amperes max to charge your battery. Assuming 10% losses through cables, connectors and charge controller means you have about 5.9 amperes per hour at full sun.

      Your 100Ah battery can supply 10 continuous amps for 10 hours or 5 amperes for 20 hours. 80% of the 100Ah battery is usable so you really only have 80 amp-hours of energy to use, that means you can consume 80 Amp-hours maximum per day. Then 80/5.9 equals 15.5 hours to fully charge your 100Ah battery. 50% discharge requires 8.5 hours of charging. Clearly, total charging time depends on the weather, as well as state and type of battery.

      Fully charging your battery should occur within four to six hours of full sun. Assume 5 hours of sun, 80 amp-hours requires 16 amperes (80/5) at 17.5 volts (12V panel). Thus you would require 280 watts (16 x 17.5) of total panel wattage, or 175 watts at 50% discharge.

  • If it have a 100amp battery with a controller….
    What range of solar panel power must be supplied for efficiency….. without damaging the battery

  • Peace
    I have a trailer with a solar system 12 volt 250 amp battery, 150 volt 60 amp controller 3 solarrip panels 40 volts 8 amps 280 watts
    The question is to connect the panels in parallel or in a column
    Thanks

    • You state that you have a 150 volt 60 amp controller, and three 40 volts 8 amps 280 watts panels.

      Then a series connection will give you: 3 x 40 = 120V at 8 amperes which is within your controllers input specifications.

      • I have a solar hybrid inverter of 5500w. and the solar panel voltage must be above 150v, as specified ..
        My question is how many solar panels and batteries is required to run efficiently..
        Please I found the web very useful

        • The number of solar panels would depend on their power rating, 100W, 200W, 400W etc. and available area/space to install them all. The number of batteries would depend on bus voltage, 12V, 24V, 48V, etc. and hours or days of autonomy

  • I have been contacted today by a person who tells me that I can heat my hose to include hot water via 3 solar panels I do not see how this can be achieved. Maybe I don’t understand but can you offer me any advice, my current heating system is via a fuel boiler.
    Thank you

    • Solar Thermal Panels can provide sufficient Hot Water for the needs of a house and depending upon your daily consumption, 3 solar thermal panels may be enough. Photovoltaic solar panels as referenced in this tutorial generate electricity, and are not recommended for heating water.

  • Hello
    We are IT company from Turkmenistan.
    If we need a Solar Panel 2Volt 720Am, can we get a price from you?
    24 Battery 2 Volt 720A/hour and enough panels are needed to charge that much battery.
    24 pieces of these materials are needed in SET, the necessary parts will be in the box, we will open the box directly and do the installation, nothing should be missing, so we can install directly without looking for any parts here.

  • Hi there.
    I have a 5kva inverter 48v
    With 10 Solar panel
    (8pieces of 250watt & 2 pieces of 200watt)
    Can I connect the 8pieces of 250watt in series and connect the 200watt in parallel

      • Hi guys, really enjoyed reading this article. My house is entirely of grid.
        I have a 5.5 kw inverter with built in mppt charge controller, I have 8 x 495 watt @45.46 voc and 12.97 amps.
        I currently have these all wired in series but do suffer with some shading issues first thing in the morning and last thing at night. My panels are installed on a Lorentz tracker. The distance from the tracker to the inverter is some 150 feet.
        I also have other panels which I have already erected and wondered how they might play a part with the same installation.
        Photos and further info can be sent.
        Thankyou.

  • Hi there, I have 4kw grid tied, but have decided to add off grid set up. Growatt 5000 ES seems ? to fit the bill , 450V + 6000PV + 100A.
    So 550W panels now available 50V + 13A scratching my head, the nearest I can get is
    5 panels in series =13A + 300V.
    6 panels in parralel = 78A + 150V. Total 450V + 91A = 6050W.
    Would appreciate comments if this doesn’t sound right.

    • The PV specifications for the Growatt 5000es are Vdc 150 to 450 volts, Idc 22 amperes maximum, Max PV array power 6kVA. Your 550W, 50V, 13A panels will only allow for one 13A series string connected to the inverter.

      V = P/I = 6000/13 = 462 volts, if each panel has a Voc of 50V, then 462/50 = 9 panels. Thus you can have one series string of 9 PV panels producing 4950 watts at full sun. Although 8 series panels at 400Vdc maybe a safer option.

  • Hi there,
    First of all, thanks for a great article, which reallyl helps to clarify things.
    I’m still not 100% sure of what’s the most efficient/fastest way to use my two solar panels 100W (18V/5.5A) to charge my 2000W portable power generator with MMPT controller, which accepts 500W, 18-70V, 18A max.
    I have the possibility to use series or parallel cabling (both theoretical as the limits of the charging system won’t be reached with two panels, and practical as I have the two MC4 Y adapters for parallels cabling).
    The power generator only reports on the app the input/output wattage in real time, and it looks like there is no increase between 1-panel and 2-panel when cabled in parallels (if I disconnect one of the panels). I haven’t had a chance to try series yet.
    Would you have any recommendations?
    Thanks!

    • Clearly a parallel connection (18V and 11A at full sun) as you already have the MC4 connectors. Two 100W panels will always give you 200 watts at “full sun” whether connected in series or parallel.

    • Manni,

      I strongly recommend connecting your panels in SERIES.

      First, their 18 volt rating is under ideal conditions (bright sun overhead) and their output voltage could easily be as low as 16 volts (or lower) under less than ideal conditions. However, your MPPT solar charge controller is designed for voltages no lower than 18 volts which means your charge controller may effectively be “off” in many conditions where your panels are still producing useful energy. Connecting your panels in series provides a voltage (typically between 24 and 36 volts) which is well above your MPPT solar charge controller’s minimum design voltage, even in far less than ideal conditions, and yet will never get anywhere close to exceeding your charge controller’s maximum design voltage (70 volts).

      There are two more possible advantages. Connecting your panels in series keeps your maximum current at 5.5 amps which allows you to get the same energy production with smaller gauge wire than if you connect them in parallel. Second, if your system is charging a 12-volt battery, your panels may not always produce enough voltage to charge your battery when connected in parallel. (Charging a 12-volt battery sometimes requires voltages as high as 14 volts.) Connecting your panels in series virtually guarantees that your panels will be able to charge your batteries even in very poor lighting conditions (e.g. cloudy skies).

  • First im living off grid in a 33 ft RV. I now have five 100 watt panels in parallel connected to a 40amp mppt controller. Im using four Walmart Max batteries (because of cost and 2 yr warranty) 100 amp hr which is 400 amp hr. I have a 3000 watt inverter feeding one leg of a electrical panel. I used a 30 amp single pole breaker to feed a post beside my trailer similar to a campground. Being an electrician with little knowledge of DC I still connected said panel to a 10ft ground post as normally I would. I also ran wires under ground from a shunt with monitor to the tongue of the trailer into a small box to where the DC part of the trailer connected to the original batteries. All equipment and batteries are in a shed about 25 feet apart. All my wiring is 10awg. Batteries are wired together using #2 wire. All equipment is Renogy because I can get open boxes on Amazon cheaper then Renogy. My question is I want to increase my wattage but can’t add anymore panels because the controller can only handle 520watts. Can I get more power using twenty five 100 watt panels (since I buy one at a time) wiring 5 in series which would bring them to 90 volts (controller can handle 100v) then making 5 sets of that configuration in parallel which would still give me the 500 watts but at 90volts. will that do anything at all for me or should I just crap this system and save and buy bigger

    • Really, 25 x 100 watt panels is still only 500 watts. You need to rethink your math’s.

      Electrical Power = Volts x Amps (P = V x I). You say that 5 panels in a series string equals 90 volts, then each panel generates 18 volts (90/5). If you panel is rated at 100 watts, then the panel current I will be: I = P/V = 100/18 = 5.56 amperes.

      Now you say you want 5 parallel branches of panels. Thus 5 x 5.56 amperes equals a total current of 27.8 amperes. So your controller at “full sun” will see 27.8 amperes at 90 volts. As said previously, P = V x I then the power generated by your proposed array at full sun will be: P = V x I = 90 x 27.8 = 2502 watts in total, which it will be as: 25 x 100 = 2500 watts, and not your perceived idea of only 500 watts.

  • To mitigate low water flow rate and pressure in a solar bore hole water pump during lower sunlight periods, can an additional set of panels (identical to the existing ones) connected in parallel to the existing ones improve output without damaging the controllers/inverters during the time of pick sunlight?

    • Adding more solar panels is always a good idea as it increases the total installed wattage of an array, while providing more power later in the evening and earlier in the morning. How much extra DC capacity (the quantity and wattage of solar panels) is installed will depend on your inverters input parameters.

  • Can I hook five panels four of which are in parallel series and the fifth panel in tied in using a t branch to join all panels together

  • Hi. When connecting 4 x 100W solar panels together with a 4 to 1 MC4 connector, will the single cable between the connector and the Solar Charge Controller need to be a size larger than the cables from the solar panels? The single cable will be run in conduit within an insulated caravan roof/wall. Thanks

    • Generally, 4-to-1 MC4 solar connectors electrically connect the 4 photovoltaic panels together in parallel. A typical 12V 100W PV panel can potentially produce about 5.5 Amperes at full sun, so 4 parallel panels will give you about 22 (5.5 x 4) amperes. Then the size of cable you use should be rated to carry at least 24 to 30 amperes. The length of cable run in metres will also determine cable size to keep voltage loss below 5% with the diameter of conduit (20mm, 25mm, 32mm, etc) large enough to allow adequate air flow around the two cables.

  • Hi Dear
    we have 40 PV panel each 100 W .17.5 volt and 5.5 Amp .with inverter type PV 1800 .rated power 3000Va/300W.MD PV18-3024 VPM.
    what is the best way to connecter off grid with storage batteries 4x 175 Amp each .
    to get at least 5 amp at neighs for 8 hours
    best Regards
    Moussa sader .
    South Lebanon

  • Hello, I am looking for an off grid system, the Growatt/Bluesun 5000ES Hybrid inverter, seems very popular.
    Looks like pricewise & size limits me to 560w panels so 50v & 13A ish.
    If inverter is 450v max and 22A max can I use 10 panels, perhaps 8 in series and last 2 in parallel, is this ok.
    Tony

    • Hello, we cannot recommend one particular inverter over another but the Growatt SPF 5000ES is a very good off-grid inverter. The maximum power point DC input range is between 150V and 430VDC with a Voc of 450V and a maximum Isc of 100 Amperes, so any single string configuration of your PV array should not exceed these values.

  • I have lived off grid 14 years and accumulated 3 strings of panels all wired in series ,1 as 3 x 300w , 1 as 6 x180w and 1 as 4x 220w. at peak sun on july 15 I only get 1740 watts total power. I want to add a string of 5 panels in parallel of 330 watts, these have diodes. and I havent had success in connecting them can they be in a string of 5or do I need 6 panels and run them through my combiner box with the series wired panels. please help ,thanks.

    • The configuration of additional panels into our array will depend greatly on the input I-V characteristics of your controller/inverter. The use of different wattage photovoltaic panels within your array will result in mismatch losses because different panels in the array have different parameters. Thus the mismatch in current-voltage (I-V) characteristics of different panels will cause significant power loss in the array. As a result, the actual output power from your array will be less than the summation of the power outputs corresponding to the individual PV panels, 2860 watts in your example. Impedance mismatch between array and load (batteries or inverter) will also reduce expected power output.

  • Sir I have a 7.5 kV mppt inverter with PV voltage 320voc and mppt voltage range is 175-266v And have 14 solar panels of 49.139 voc so how to connect them to have batter result for my inverter charging should I connect them in 6 in series 3 in parrels

    • Without knowing your panel details, a Voc of 49.139 volts would produce about 42 Vmp volts (about 400W). If your inverter has an mppt range of 175-266 volts, then the maximum series string would be six (6) panels (266/42). Thus you would connect the panels as 6 in series and 2 parallel branches (6S2P). If you purchased an addition identical panel (15 in total), you could go 5S3P.

  • Hi, I have 63 panel of 335 Wp and UOC = 41,5 . The invertor says it have maximum input voltage 1000V and have 2 MMPT .
    How i conect these panel? THANKS.

    • 1000V divided by Voc = 41,5V = 24 series panels maximum.
      As you have 63 panels, then 3 parallel branches of 21 panels (21S3P), or combinations thereof

  • Hi, thanks alot for the explanation.its simple and well explained.
    Looking for more about the protection and solar chargers control that are required for effective charging. Thanks.

  • Hello, i have already installed 10 solar panels ( Longi 550w ) with Voc=49.80 and Isc=13.98
    Can i connect 5 panels in series and the remaining 5 in series and put them in parallel to each other (series – parallel) configuration, so that the Voc will bel 249v and the Isc will 27.96a due to parallel connection.
    If having a Growatt 5kw inverter (spf 5000es) with max pv array power of 6000w, max Voc= 450v, pv array MPPT voltage range 120~430Vdc, and max pv input current= 22a.
    The point is it safe to input 27.96a from pv panels on 22a inverter?

  • Hi so I purchased an rv that has a go power 190w panel (20.4vmp and 9.45imp) I also have a pre purchased renogy 200watt kit that has 2x 100w panels (20.4Vmp and 4.91imp each)So if I read this correct, I can connect these in a parallel set up and I should get 19.27imp at 20.4vmp. For a total of 393watts for the system under optimal sun.

    • When PV panels are connected in parallel, the individual currents “add”, but the voltage is the “average” of the panels. For example, Vparallel = (VP1 + VP2 + VP3 …… + VPn)/Vn and Iparallel = IP1 + IP2 + IP3 ……. + IPn, etc. Thus for dissimilar PV panels the output voltage will always be towards the lower panels value.

      As stated that your three 12 volt PV panels are all rated at 20.4V, Then Vparallel = (20.4 + 20.4 + 20.4)/3 = 20.4 volts and Iparallel to equal 9.45 + 4.91 + 4.91 = 19.27 amperes at full sun.

  • Hey I have 3 12v batteries 1.5kva inverter how many 300watts solar panels do I need to the batteries at full sun

  • Hi my friend , i have 5.5kw inverter 48 volts , also 10 panels 545 watt each , i have joined them parallel (+) (-) all and took last 2 opposite sides negative and positive … i gained almost 430 volts but in my app shows in WATT too low like 670 watt i have from frm panels . What do you recomend me to do

    • Nothing. Monitor your app over a period of several months to see how your system performs, morning, solar noon and night throughout the year, and then decide if changes are required. One 670 watt reading tells you nothing.

  • Hi i have 12 solar panels 330 watts for a house and a 4g solis inverter what is the best way to connect solar panels together?

      • Hi i dont know much about solar just checked max dc input 3.5kw 600v can i do 6 in series and 6 in parrallel?

        • Look, if you make the effort to read the manual for the inverter it states: “Max. Input Voltage = 600VDC” and “Max. Input Current = 11A”. Then the configuration of your 12 panels must not exceed 600 Volts or 11 Amperes. 330 watt panels should be 24V panels x 75% would give an Open-circuit voltage, VOC of approximately 24 x 1.75 = 42 volts. If VOC = 42 volts (check datasheet) per panel then: 600/42 = 14 series panels maximum per string. You state you have 12 panels, then 12 x 42 = 500 volts, within the 600V limit. ISC for a 330W panel is less than 10 Amperes (check datasheet), then a single series string is required.

  • I have a 50 watt renogy solar setup in my shed wanting to add another 50 watt panel to it do I need connectors?

  • I have two 275wtts solar panel what is the best solar controller ,inverter and battery size if I want to use a deep freezer

    • Clearly the daily consumption, and therefore battery storage required will depend on your deep freezer and whether two panels are sufficient to power it. The choice of inverter depends on your solar panel and battery bank configuration. The battery(s) required is commonly based on your daily power usage and the battery type.

      You have: 2 x 275W = 550 watts of solar power at FULL sun maximum. If you get FULL sun for an average of 5 hours per day, then: 550W x 5h = 2750Wh, or 2.75kWh. For 50% depth of charge and 80% efficiency, 2.75kWh x 2 x 1.2 = 6.6kWh. Thus, 6.6kWh at 12 volts is equal to: 6600/12 = 550 amp hours of battery capacity minimum, or 275Ah at 24V. Then you can build your system around that, the choice is yours.

  • If I connect 4×335 watt panel’s in series, parallel what wattage can I expect to see?

  • Lets say I have a on grid system that drops out when the power is off and I want to shut that system off and energies it with an off grid system but I’ll need a gate to stop back feed to the off grid system ( Diode ) as the gate. I am looking for a little direction & for parts supply. My on grid will match sign wave coming in from Edison and so would it do the same with off grid ? and would you suggest some kind of capacitor arrangement to curb any spike or as a pad ?

  • Good day,
    I have two pieces of 12V 100Ah VRLA batteries, two pieces of 24V 380W mono solar panels, one piece of 60A 12V/24V/48V MPPT charge controller and one 2KVA 24Vdc Inverter. What is the best method of connecting the solar panels to obtain maximum efficiency; series or parallel connection?

    • You have two 380 watt panels which will produce a total of 760 watts (2 x 380) at “Full Sun” no matter how they are connected. “to obtain maximum efficiency” point them at the sun and keep them cool as they directly influence the energy production and efficiency

  • Pls I have a 200ah/12V battery,
    2 200 watts panel, 850va/12v inverter. Please how do I connect series or parallel?

      • Thank you for the prompt response, the solar panels are 24v each, pwm or mppt controller which would you recommend I use ?

        • If the solar panels are 24v each . Connect them in parallel. Register the battery’s nominal voltage on the pwm co troller before connecting the solar panel to it.

  • Good evening. I have 5kva 48volts Inverter and 8 pieces of 220ah batteries. How many of 300 watts panel do i need to get the batteries fully charged at Peak Sun

  • I have a 1.5kva inverter and 2(220ah) batteries. How many of 180w panels does i need to get full charge at Peak of the Sun.

      • Thanks and Oh I forgot to specify the rating on my charger controller
        12v/24v
        Max PV 50v
        Maxx PV input Power: 390w(12v) 780w(24v)

        Will this be okay for the 6panel recommended for a full charger at peak of the sun?

Leave a Comment

Your email address will not be published. Required fields are marked *

*
*